Sistema operacional

Classificado em Computação

Escrito em em português com um tamanho de 74,26 KB.

Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 1
Capítulo 1 Visão Geral
1. Como seria utilizar um computador sem um sistema operacional? Quais são suas duas principais
funções?
Sem o sistema operacional, um usuário para interagir com o computador deveria conhecer profundamente diversos
detalhes sobre hardware do equipamento, o que tornaria seu trabalho lento e com grandes possibilidades de erros. As
duas principais funções são facilidade de acesso aos recursos do sistema e compartilhamento de recursos de forma
organizada e protegida.
2. Explique o conceito de máquina virtual. Qual a grande vantagem em utilizar este conceito?
O computador pode ser visualizado como uma máquina de camadas, onde inicialmente existem duas camadas:
hardware (nível 0) e sistema operacional (nível 1). Desta forma, o usuário pode enxergar a máquina como sendo apenas
o sistema operacional, ou seja, como se o hardware não existisse. Esta visão modular e abstrata é chamada máquina
virtual. A vantagem desse conceito é tornar a interação entre usuário e computador mais simples, confiável e eficiente.
3. Defina o conceito de uma máquina de níveis ou camadas.
O computador pode ser visualizado como uma máquina de níveis ou máquina de camadas, possuindo tantos níveis
quanto forem necessários para adequar o usuário às suas diversas aplicações. Quando o usuário está trabalhando em um
desses níveis, não necessita saber da existência das outras camadas. Com isso a interação entre usuário e computador
apresenta-se mais simples, confiável e eficiente.
4. Quais os tipos de sistemas operacionais existentes?
Sistemas monoprogramáveis ou monotarefa, sistemas multiprogramáveis ou multitarefa e sistemas com múltiplos
processadores.
5. Por que dizemos que existe uma subutilização de recursos em sistemas monoprogamáveis?
Porque em sistemas monoprogramáveis somente é possível a execução de um programa por vez. Como um programa
não utiliza todos os recursos do sistema totalmente ao longo da sua execução, existe ociosidade e, consequentemente,
subutilização de alguns recursos.
6. Qual a grande diferença entre sistemas monoprogramáveis e sistemas multiprogramáveis?
Os sistemas monoprogramáveis se caracterizam por permitir que o processador, a memória e os periféricos permaneçam
exclusivamente dedicados à execução de um único programa. Nos sistemas multiprogramáveis ou multitarefa, os
recursos computacionais são compartilhados entre os diversos usuários e aplicações. Enquanto em sistemas
monoprogramáveis existe apenas um programa utilizando os recursos disponíveis, nos multiprogramáveis várias
aplicações compartilham esses mesmos recursos.
7. Quais as vantagens dos sistemas multiprogramáveis?
As vantagens do uso de sistemas multiprogramáveis são a redução do tempo de resposta das aplicações processadas no
ambiente e de custos, a partir do compartilhamento dos diversos recursos do sistema entre as diferentes aplicações.
8. Um sistema monousuário pode ser um sistema multiprogramável? Dê um exemplo.
Sim, somente um usuário interage com o sistema podento possuir diversas aplicações executando concorrentemente. O
sistema Windows NT é um exemplo.
9. Quais são os tipos de sistemas multiprogramáveis?
Sistemas batch, sistemas de tempo compartilhado e sistemas de tempo real.
10. O que caracteriza o processamento batch? Quais aplicações podem ser processadas neste tipo de
ambiente?
O processamento batch tem a característica de não exigir a interação do usuário com a aplicação. Todas as entradas e
saídas de dados da aplicação são implemetadas por algum tipo de memória secundária, geralmente arquivos em disco.
Alguns exemplos de aplicações originalmente processadas em batch são programas envolvendo cálculos numéricos,
compilações, ordenações, backups e todos aqueles onde não é necessária a interação com o usuário.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 2
11. Como funcionam os sistemas de tempo compartilhado? Quais as vantagens em utilizá-los?
Os sistemas de tempo compartilhado (time-sharing) permitem que diversos programas sejam executados a partir da
divisão do tempo do processador em pequenos intervalos, denomidados fatia de tempo (time-slice). A vantagem na sua
utilização é possibilitar para cada usuário um ambiente de trabalho próprio, dando a impressão de que todo o sistema
está dedicado, exclusivamente, a ele.
12. Qual a grande diferença entre sistemas de tempo compartilhado e tempo real? Quais aplicações são
indicadas para sistemas de tempo real?
O fator tempo de resposta. Nos sistemas de tempo real, os tempos de resposta devem estar dentro de limites rígidos.
Aplicações de controle de processos, como no monitoramento de refinarias de petróleo, controle de tráfego aéreo, de
usinas termoelétricas e nucleares são executadas em sistemas de tempo real.
13. O que são sistemas com múltiplos processadores e quais as vantagens em utilizá-los?
Os sistemas com múltiplos processadores caracterizam-se por possuir duas ou mais UCPs interligadas e trabalhando em
conjunto. A vantagem deste tipo de sistema é permitir que vários programas sejam executados ao mesmo tempo ou que
um mesmo programa seja subdividido em partes para serem executadas simultaneamente em mais de um processador.
14. Qual a grande diferença entre sistemas fortemente acoplados e fracamente acoplados?
Nos sistemas fortemente acoplados existem vários processadores compartilhando uma única memória física e
dispositivos de entrada/saída, sendo gerenciados por apenas um sistema operacional. Os sistemas fracamente acoplados
caracterizam-se por possuir dois ou mais sistemas computacionais conectados através de linhas de comunicação. Cada
sistema funciona de forma independente, possuindo seu próprio sistema operacional e gerenciando seus próprios
recursos, como UCP, memória e dispositivos de entrada/saída.
15. O que é um sistema SMP? Qual a diferença para um sistema NUMA?
Nos sistemas SMP, o tempo de acesso à memória principal pelos diversos processadores é uniforme. Nos sistemas
NUMA, existem diversos conjuntos de processadores e memória principal interconectados, onde o tempo de acesso à
memória principal varia em função da sua localização física.
16. O que é um sistema fracamente acoplado? Qual a diferença entre sistemas operacionais de rede e
sistemas operacionais distribuídos?
Os sistemas fracamente acoplados caracterizam-se por possuir dois ou mais sistemas computacionais conectados através
de linhas de comunicação. Cada sistema funciona de forma independente, possuindo seu próprio sistema operacional e
gerenciando seus próprios recursos, como UCP, memória e dispositivos de entrada/saída. Os sistemas operacionais de
rede permitem que um host compartilhe seus recursos, como uma impressora ou diretório, com os demais hosts da rede
enquanto que nos sistemas distribuídos, o sistema operacional esconde os detalhes dos hosts individuais e passa a tratálos
como um conjunto único, como se fosse um sistema fortemente acoplado.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 3
Capítulo 2 Conceitos de Hardware e Software
1. Quais são as unidades funcionais de um sistema computacional?
Processador ou unidade central de processamento, memória principal e dispositivos de entrada/saída.
2. Quais os componentes de um processador e quais são suas funções?
Um processador é composto por unidade de controle, unidade lógica e aritmética, e registradores. A unidade de controle
(UC) é responsável por gerenciar as atividades de todos os componentes do computador, como a gravação de dados em
discos ou a busca de instruções na memória. A unidade lógica e aritmética (ULA), como o nome indica, é responsável
pela realização de operações lógicas (testes e comparações) e aritméticas (somas e subtrações).
3. Como a memória principal de um computador é organizada?
A memória é composta por unidades de acesso chamadas células, sendo cada célula composta por um determinado
número de bits. Atualmente, a grande maioria dos computadores utiliza o byte (8 bits) como tamanho de célula.
4. Descreva os ciclos de leitura e gravação da memória principal.
No ciclo de leitura, a UCP armazena no MAR, o endereço da célula a ser lida e gera um sinal de controle para a
memória principal, indicando que uma operação de leitura deve ser realizada. O conteúdo da(s) célula(s), identificada(s)
pelo endereço contido no MAR, é transferido para o MBR
No cliclo de gravação, a UCP armazena no MAR, o endereço da célula que será gravada e armazena no MBR, a
informação que deverá ser gravada. A UCP gera um sinal de controle para a memória principal, indicando que uma
operação de gravação deve ser realizada e a informação contida no MBR é transferida para a célula de memória
endereçada pelo MAR
5. Qual o número máximo de células endereçadas em arquiteturas com MAR de 16, 32 e 64 bits?
MAR=16 bits número max células = 216
MAR=32 bits número max células = 232
MAR=64 bits número max células = 264
6. O que são memórias voláteis e não-voláteis?
Memórias voláteis precisam estar sempre energizadas para manter suas informações, o que não acontece com as nãovoláteis.
7. Conceitue memória cache e apresente as principais vantagens no seu uso.
A memória cache é uma memória volátil de alta velocidade, porém com pequena capacidade de armazenamento. O
tempo de acesso a um dado nela contido é muito menor que se o mesmo estivesse na memória principal. O propósito do
uso da memória cache é minimizar a disparidade existente entre a velocidade com que o processador executa instruções
e a velocidade com que dados são acessados na memória principal.
8. Quais as diferenças entre a memória principal e a memória secundária?
A memória principal é um dispositivo de armazenamento, em geral volátil, onde são armazenados instruções e dados
utilizados pelo processador durante a execução de programas. A memória secundária é um dispositivo não-volátil com
maior capacidade de armazenamento, porém com menor velocidade de acesso aos seus dados armazenados.
9. Diferencie as funções básicas dos dispositivos de E/S.
Os dispositivos de entrada e saída podem ser divididos em duas categorias: os que são utilizados como memória
secundária e os que servem para a interface usuário-máquina. Os dispositivos utilizados como memória secundária
(discos e fitas magnéticas) caracterizam-se por ter capacidade de armazenamento bastante superior ao da memória
principal. Seu custo é relativamente baixo, porém o tempo de acesso à memória secundária é bem superior ao da
memória principal. Outros dispositivos têm como finalidade a comunicação usuário-máquina, como teclados, monitores
de vídeo, impressoras e plotters.
10. Caracterize os barramentos processador-memória, E/S e backplane.
Os barramentos processador-memória são de curta extensão e alta velocidade para que seja otimizada a transferência de
informação entre processadores e memórias. Os barramentos de E/S possuem maior extensão, são mais lentos e
permitem a conexão de diferentes dispositivos. O barramento de backplane tem a função de integrar os dois
barramentos anteriores.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 4
11. Como a técnica de pipelining melhora o desempenho dos sistemas computacionais?
Permitindo ao processador executar múltiplas instruções paralelamente em estágios diferentes.
12. Compare as arquiteturas de processadores RISC e CISC.
Ver Tabela 2.3 do livro.
13. Conceitue a técnica de benchmark e como é sua realização.
A técnica conhecida como benchmark permite a análise de desempenho comparativa entre sistemas computacionais.
Neste método, um conjunto de programas é executado em cada sistema avaliado e o tempo de execução comparado. A
escolha dos programas deve ser criteriosa para refletir os diferentes tipos de aplicação.
14. Por que o código-objeto gerado pelo tradutor ainda não pode ser executado?
Isso ocorre em função de um programa poder chamar sub-rotinas externas, e, neste caso, o tradutor não tem como
associar o programa principal às sub-rotinas chamadas. Esta função é realizada pelo linker
.
15. Por que a execução de programas interpretados é mais lenta que a de programas compilados?
Como não existe a geração de um código executável, as instruções de um programa devem ser traduzidas toda vez que
este for executado.
16. Quais as funções do linker?
Suas funções básicas são resolver todas as referências simbólicas existentes entre os módulos de um programa e
reservar memória para sua execução.
17. Qual a principal função do loader?
Carregar na memória principal um programa para ser executado.
18. Quais as facilidades oferecidas pelo depurador?
O depurador oferece ao usuário recursos como acompanhar a execução de um programa instrução por instrução;
possibilitar a alteração e visualização do conteúdo de variáveis; implementar pontos de parada dentro do programa
(breakpoint), de forma que, durante a execução, o programa pare nesses pontos e especificar que, toda vez que o
conteúdo de uma variável for modificado, o programa envie uma mensagem (watchpoint).
19. Pesquise comandos disponíveis em linguagens de controle de sistemas operacionais.
Pesquisa livre.
20. Explique o processo de ativação (boot) do sistema operacional.
Inicialmente, todo o código do sistema operacional reside memória secundária como discos e fitas. Toda vez que um
computador é ligado, o sistema operacional tem que ser carregado da memória secundária para a memória principal.
Esse procedimento é realizado por um programa localizado em um bloco específico do disco (boot block).
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 5
Capítulo 3 - Concorrência
1. O que é concorrência e como este conceito está presente nos sistemas operacionais multiprogramáveis?
Concorrência é o princípio básico para projeto e implementação dos sistemas operacionais multiprogramáveis onde é
possível o processador executar instruções em paralelo com operações de E/S. Isso possibilita a utilização concorrente
da UCP por diversos programas sendo implementada de maneira que, quando um programa perde o uso do processador
e depois retorna para continuar o processamento, seu estado deve ser idêntico ao do momento em que foi interrompido.
O programa deverá continuar sua execução exatamente na instrução seguinte àquela em que havia parado, aparentando
ao usuário que nada aconteceu.
2. Por que o mecanismo de interrupção é fundamental para a implementação da multiprogramação?
Porque é em função desse mecanismo que o sistema operacional sincroniza a execução de todas as suas rotinas e dos
programas dos usuários, além de controlar dispositivos.
3. Explique o mecanismo de funcionamento das interrupções.
Uma interrupção é sempre gerada por algum evento externo ao programa e, neste caso, independe da instrução que está
sendo executada. Ao final da execução de cada instrução, a unidade de controle verifica a ocorrência de algum tipo de
interrupção. Neste caso, o programa em execução é interrompido e o controle desviado para uma rotina responsável por
tratar o evento ocorrido, denominada rotina de tratamento de interrupção. Para que o programa possa posteriormente
voltar a ser executado, é necessário que, no momento da interrupção, um conjunto de informações sobre a sua execução
seja preservado. Essas informações consistem no conteúdo de registradores, que deverão ser restaurados para a
continuação do programa.
4. O que são eventos síncronos e assíncronos? Como estes eventos estão relacionados ao mecanismo de
interrupção e exceção?
Evento síncronos são resultados direto da execução do programa corrente. Tais eventos são previsíveis e, por definição,
só podem ocorrer um único de cada vez. Eventos assíncronos não são relacionados à instrução do programa corrente.
Esses eventos, por serem imprevisíveis, podem ocorrer múltiplas vezes, como no caso de diversos dispositivos de E/S
informarem ao processador que estão prontos para receber ou transmitir dados. Uma interrupção é um evento
assíncrono enquanto uma exceção é um evento síncrono.
5. Dê exemplos de eventos associados ao mecanismo de exceção.
Uma instrução que gere a situação de overflow ou uma divisão por zero.
6. Qual a vantagem da E/S controlada por interrupção comparada com a técnica de polling?
Na E/S controlada por interrupção, as operações de E/S podem ser realizadas de uma forma mais eficiente. Em vez de o
sistema periodicamente verificar o estado de uma operação pendente como na técnica de polling, o próprio controlador
interrompe o processador para avisar do término da operação. Com esse mecanismo, o processador, após a execução de
um comando de leitura ou gravação, permanece livre para o processamento de outras tarefas.
7. O que é DMA e qual a vantagem desta técnica?
A técnica de DMA permite que um bloco de dados seja transferido entre a memória principal e dispositivos de E/S,
sem a intervenção do processador, exceto no início e no final da transferência. Quando o sistema deseja ler ou gravar
um bloco de dados, o processador informa ao controlador sua localização, o dispositivo de E/S, a posição inicial da
memória de onde os dados serão lidos ou gravados e o tamanho do bloco. Com estas informações, o controlador realiza
a transferência entre o periférico e a memória principal, e o processador é somente interrompido no final da operação.
8. Como a técnica de buffering permite aumentar a concorrência em um sistema computacional?
Como o buffering permite minimizar o problema da disparidade da velocidade de processamento existente entre o
processador e os dispositivos de E/S, esta técnica permite manter, na maior parte do tempo, processador e dispositivos
de E/S ocupados.
9. Explique o mecanismo de spooling de impressão.
No momento em que um comando de impressão é executado, as informações que serão impressas são gravadas antes
em um arquivo em disco, conhecido como arquivo de spool, liberando imediatamente o programa para outras
atividades. Posteriormente, o sistema operacional encarrega-se em direcionar o conteúdo do arquivo de spool para a
impressora.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 6
10. Em um sistema multiprogramável, seus usuários utilizam o mesmo editor de textos (200 Kb), compilador
(300 Kb), software de correio eletrônico (200 Kb) e uma aplicação corporativa (500 Kb). Caso o sistema
não implemente reentrância, qual o espaço de memória principal ocupado pelos programas quando 10
usuários estiverem utilizando todas as aplicações simultaneamente? Qual o espaço liberado quando o
sistema implementa reentrância em todas as aplicações?
Sem reentrância, cada usuário teria sua cópia do código na memória totalizando 10 x (200 Kb + 300 Kb + 200 Kb + 500
Kb) = 12.000 Kb. Caso a reentrância seja implementada, apenas uma cópia do código seria necessária na memória
principal (200 Kb + 300 Kb + 200 Kb + 500 Kb) totalizando 1.200 Kb. Um total de 10.800 Kb seriam liberados da
memória principal.
11. Por que a questão da proteção torna-se fundamental em ambientes multiprogramáveis?
Se considerarmos que diversos usuários estão compartilhando os mesmos recursos como memória, processador e
dispositivos de E/S, deve existir uma preocupação em garantir a confiabilidade e a integridade dos programas e dados
dos usuários, além do próprio sistema operacional.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 7
Capítulo 4 Estrutura do Sistema Operacional
1. O que é o núcleo do sistema e quais são suas principais funções?
É o conjunto de rotinas que oferece serviços aos usuários, suas aplicações, além do próprio sistema operacional. As
principais funções do núcleo encontradas na maioria dos sistemas comerciais são: tratamento de interrupções e
exceções; criação e eliminação de processos e threads; sincronização e comunicação entre processos e threads;
escalonamento e controle dos processos e threads; gerência de memória; gerência do sistema de arquivos; gerência de
dispositivos de E/S; suporte à redes locais e distribuídas; contabilização do uso do sistema; auditoria e segurança do
sistema.
2. O que é uma system call e qual sua importância para a segurança do sistema? Como as system calls são
utilizadas por um programa?
As system calls podem ser entendidas como uma porta de entrada para o acesso ao núcleo do sistema operacional e a
seus serviços. Sempre que um usuário ou aplicação desejar algum serviço do sistema, é realizada uma chamada a uma
de suas rotinas através de uma system call. Através dos parâmetros fornecidos na system call, a solicitação é processada
e uma resposta é retornada a aplicação juntamente com um estado de conclusão indicando se houve algum erro. O
mecanismo de ativação e comunicação entre o programa e o sistema operacional é semelhante ao mecanismo
implementado quando um programa chama uma subrotina.
3. O que são instruções privilegiadas e não privilegiadas? Qual a relação dessas instruções com os modos
de acesso?
Instruções privilegiadas são instruções que só devem ser executadas pelo sistema operacional ou sob sua supervisão,
impedindo, assim, a ocorrência de problemas de segurança e integridade do sistema. As instruções não-privilegiadas
não oferecem risco ao sistema. Quando o processador trabalha no modo usuário, uma aplicação só pode executar
instruções não-privilegiadas, tendo acesso a um número reduzido de instruções, enquanto no modo kernel ou supervisor
a aplicação pode ter acesso ao conjunto total de instruções do processador.
4. Quais das instruções a seguir devem ser executas apenas em modo kernel? Desabilitar todas as
interrupções, consultar a data e hora do sistema, alterar a data e hora do sistema, alterar informações
residentes no núcleo do sistema, somar duas variáveis declaradas dentro do programa, realizar um desvio
para um instrução dentro do próprio programa e acessar diretamente posições no disco.
Desabilitar todas as interrupções, alterar a data e hora do sistema, alterar informações residentes no núcleo do sistema e
acessar diretamente posições no disco.
5. Explique como funciona a mudança de modos de acesso e dê um exemplo de como um programa faz uso
desse mecanismo.
Sempre que um programa necessita executar uma instrução privilegiada, a solicitação deve ser realizada através de uma
chamada a uma system call, que altera o modo de acesso do processador do modo usuário para o modo kernel. Ao
término da execução da rotina do sistema, o modo de acesso retorna para o modo usuário.
6. Como o kernel do sistema operacional pode ser protegido pelo mecanismo de modos de acesso?
Através do modo de acesso de uma aplicação determinado por um conjunto de bits localizado no registrador de status
do processador ou PSW. Através desse registrador, o hardware verifica se a instrução pode ou não ser executada pela
aplicação, possibilitando proteger o kernel do sistema operacional de um acesso indevido.
7. Compare as arquiteturas monolítica e de camadas. Quais as vantagens e desvantagens de cada
arquitetura?
A arquitetura monolítica pode ser comparada com uma aplicação formada por vários módulos que são compilados
separadamente e depois linkados, formando um grande e único programa executável, onde os módulos podem interagir
livremente. Na arquitetura de camadas, o sistema é dividido em níveis sobrepostos. Cada camada oferece um conjunto
de funções que podem ser utilizadas apenas pelas camadas superiores. A vantagem da estruturação em camadas é isolar
as funções do sistema operacional, facilitando sua manutenção e depuração, além de criar uma hierarquia de níveis de
modos de acesso, protegendo as camadas mais internas. Uma desvantagem para o modelo de camadas é o desempenho.
Cada nova camada implica em uma mudança no modo de acesso.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 8
8. Quais as vantagens do modelo de máquina virtual?
Além de permitir a convivência de sistemas operacionais diferentes no mesmo computador, a vantagem desse modelo é
criar um isolamento total entre cada VM, oferecendo grande segurança para cada máquina virtual.
9. Como funciona o modelo cliente-servidor na arquitetura microkernel? Quais suas vantagens e
desvantagens dessa arquitetura?
Sempre que uma aplicação deseja algum serviço, é realizada uma solicitação ao processo responsável. Neste caso, a
aplicação que solicita o serviço é chamada de cliente, enquanto o processo que responde à solicitação é chamado de
servidor. Um cliente, que pode ser uma aplicação de um usuário ou um outro componente do sistema operacional,
solicita um serviço enviando uma mensagem para o servidor. O servidor responde ao cliente através de uma outra
mensagem. A utilização deste modelo permite que os servidores executem em modo usuário, ou seja, não tenham
acesso direto a certos componentes do sistema. Apenas o núcleo do sistema, responsável pela comunicação entre
clientes e servidores, executa no modo kernel. Como conseqüência, se ocorrer um erro em um servidor, este poderá
parar, mas o sistema não ficará inteiramente comprometido, aumentando assim a sua disponibilidade. Outra vantagem é
que a arquitetura microkernel permite isolar as funções do sistema operacional por diversos processos servidores
pequenos e dedicados a serviços específicos, tornado o núcleo menor, mais fácil de depurar e, conseqüentemente,
aumentando sua confiabilidade. Na arquitetura microkernel, o sistema operacional passa a ser de mais fácil manutenção,
flexível e de maior portabilidade. Apesar de todas as vantagens deste modelo, sua implementação, na prática, é muito
difícil. Primeiro existe o problema de desempenho, devido a necessidade de mudança de modo de acesso a cada
comunicação entre clientes e servidores. Outro problema é que certas funções do sistema operacional exigem acesso
direto ao hardware, como operações de E/S.
10. Por que a utilização da programação orientada a objetos é um caminho natural para o projeto de sistemas
operacionais?
Existe uma série de vantagens na utilização de programação por objetos no projeto e na implementação de sistemas
operacionais. Os principais benefícios são: melhoria na organização das funções e recursos do sistema; redução no
tempo de desenvolvimento; maior facilidade na manutenção e extensão do sistema; facilidade de implementação do
modelo de computação distribuída.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 9
Capítulo 5 Processo
1. Defina o conceito de processo.
Um processo pode ser definido como o ambiente onde um programa é executado. Este ambiente, além das informações
sobre a execução, possui também o quanto de recursos do sistema cada programa pode utilizar, como o espaço de
endereçamento, tempo de processador e área em disco.
2. Por que o conceito de processo é tão importante no projeto de sistemas multiprogramáveis?
Através de processos, um programa pode alocar recursos, compartilhar dados, trocar informações e sincronizar sua
execução. Nos sistemas multiprogramáveis os processos são executados concorrentemente, compartilhando o uso do
processador, memória principal, dispositivos de E/S dentre outros recursos.
3. É possível que um programa execute no contexto de um processo e não execute no contexto de um
outro? Por que?
Sim, pois a execução de um programa pode necessitar de recursos do sistema que um processo pode possuir enquanto
outro não.
4. Quais partes compõem um processo?
Um processo é formado por três partes, conhecidas como contexto de hardware, contexto de software e espaço de
endereçamento, que juntos mantêm todas as informações necessárias à execução de um programa.
5. O que é o contexto de hardware de um processo e como é a implementação da troca de contexto?
O contexto de hardware armazena o conteúdo dos registradores gerais da UCP, além dos registradores de uso específico
como program counter (PC), stack pointer (SP) e registrador de status. Quando um processo está em execução, o seu
contexto de hardware está armazenado nos registradores do processador. No momento em que o processo perde a
utilização da UCP, o sistema salva as informações no contexto de hardware do processo.
6. Qual a função do contexto de software? Exemplifique cada grupo de informação.
No contexto de software são especificadas características e limites dos recursos que podem ser alocados pelo processo,
como o número máximo de arquivos abertos simultaneamente, prioridade de execução e tamanho do buffer para
operações de E/S. O contexto de software é composto por três grupos de informações sobre o processo: identificação,
quotas e privilégios. Ver item 5.2.2.
7. O que é o espaço de endereçamento de um processo?
O espaço de endereçamento é a área de memória pertencente ao processo onde as instruções e dados do programa são
armazenados para execução. Cada processo possui seu próprio espaço de endereçamento, que deve ser devidamente
protegido do acesso dos demais processos.
8. Como o sistema operacional implementa o conceito de processo? Qual a estrutura de dados indicada para
organizar os diversos processos na memória principal?
O processo é implementado pelo sistema operacional através de uma estrutura de dados chamada bloco de controle do
processo (Process Control Block PCB). A partir do PCB, o sistema operacional mantém todas as informações sobre
o contexto de hardware, contexto de software e espaço de endereçamento de cada processo.
9. Defina os cinco estados possíveis de um processo?
Estado de Execução: processo que está sendo processado pela UCP no momento.
Estado de Pronto: processo que aguarda para ser executado.
Estado de Espera: processo que aguarda por algum evento ou recurso para prosseguir processamento.
Estado de Criação: processo cujo PCB já foi criado porém ainda não teve seu processamento iniciado.
Estado de Terminado: processo que não pode ter mais nenhum programa executado no seu contexto, porém o sistema
operacional mantém suas informações de controle presentes na memória..
10. Dê um exemplo que apresente todas as mudanças de estado de um processo, juntamente com o evento
associado a cada mudança.
Livre.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 10
11. Diferencie processos multithreads, subprocessos e processos independentes.
Processos independentes não têm vínculo com os processos criadores. A criação de um processo independente exige a
alocação de um PCB, possuindo contextos de hardware, contexto de software e espaço de endereçamento próprios.
Subprocessos são processos criados dentro de uma estrutura hierárquica. Caso um processo pai deixe de existir, os
subprocessos subordinados são automaticamente eliminados. Semelhante aos processos independentes, subprocessos
possuem seu próprio PCB. Além da dependência hierárquica entre processos e subprocessos, uma outra característica
neste tipo de implementação é que subprocessos podem compartilhar quotas com o processo pai. Neste caso, quando
um subprocesso é criado, o processo pai cede parte de suas quotas ao processo filho.
Processos multithreads suportam múltiplos threads, cada qual associado a uma parte do código da aplicação. Neste caso
não é necessário haver diversos processos para a implementação da concorrência. Threads compartilham o processador
da mesma maneira que um processo, ou seja, enquanto um thread espera por uma operação de E/S, outro thread pode
ser executado
.
12. Explique a diferença entre processos foreground e background.
Um processo foreground é aquele que permite a comunicação direta do usuário com o processo durante o seu
processamento. Neste caso, tanto o canal de entrada quanto o de saída estão associados a um terminal com teclado,
mouse e monitor, permitindo, assim, a interação com o usuário. Um processo background é aquele onde não existe a
comunicação com o usuário durante o seu processamento. Neste caso, os canais de E/S não estão associados a nenhum
dispositivo de E/S interativo, mas em geral a arquivos de E/S.
13. Qual a relação entre processo e a arquitetura microkernel?
A arquitetura microkernel baseia-se na utilização de processos em modo usuário para executar diversas funções
relativas ao sistema operacional, como gerência de memória e escalonamento.
14. Dê exemplos de aplicações CPU-bound e I/O-bound.
Livre.
15. Justifique com um exemplo a frase o sinal está para o processo assim como as interrupções e exceções
estão para o sistema operacional.
Quando ocorre uma divisão por zero, por exemplo, o sistema operacional é notificado do problema através de uma
exceção. Por sua vez, o sistema deve notificar ao processo que gerou o problema através de um sinal.
16. Explique como a eliminação de um processo utiliza o mecanismo de sinais.
Quando um processo é eliminado, o sistema ativa o sinal associado a este evento. O processo somente será excluído do
sistema quando for selecionado para execução. Neste caso, é possível que o processo demore algum período de tempo
até ser eliminado de fato.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 11
Capítulo 6 Thread
1. Como uma aplicação pode implementar concorrência em um ambiente monothread?
Através de processos independentes e subprocessos.
2. Quais os problemas de aplicações concorrentes desenvolvidas em ambientes monothread?
Um problema é que o uso de processos no desenvolvimento de aplicações concorrentes demanda consumo de diversos
recursos do sistema. Sempre que um novo processo é criado, o sistema deve alocar recursos para cada processo,
consumindo tempo de processador neste trabalho. No caso do término do processo, o sistema dispensa tempo para
desalocar recursos previamente alocados.
Outro problema a ser considerado é quanto ao compartilhamento do espaço de endereçamento. Como cada processo
possui seu próprio espaço de endereçamento, a comunicação entre processos torna-se difícil e lenta, pois utiliza
mecanismos como pipes, sinais, semáforos, memória compartilhada ou troca de mensagem.
3. O que é um thread e quais as vantagens em sua utilização?
Um thread pode ser definido como uma subrotina de um programa que pode ser executada de forma assíncrona, ou seja,
executada paralelamente ao programa chamador. A grande vantagem no uso de threads é a possibilidade de minimizar a
alocação de recursos do sistema, além de diminuir o overhead na criação, troca e eliminação de processos.
4. Explique a diferença entre unidade de alocação de recursos e unidade de escalonamento?
Em ambientes monothread, o processo é ao mesmo tempo a unidade de alocação de recursos e a unidade de
escalonamento. A independência entre os conceitos de processo e thread permite separar a unidade de alocação de
recursos da unidade de escalonamento, que em ambientes monothread estão fortemente relacionadas. Em um ambiente
multithread, a unidade de alocação de recursos é o processo, onde todos os seus threads compartilham o espaço de
endereçamento, descritores de arquivos e dispositivos de E/S. Por outro lado, cada thread representa uma unidade de
escalonamento independente e, neste caso, o sistema não seleciona um processo para a execução, mas sim um de seus
threads.
5. Quais as vantagens e desvantagens do compartilhamento do espaço de endereçamento entre threads de
um mesmo processo?
Como threads de um mesmo processo compartilham o mesmo espaço de endereçamento, não existe qualquer proteção
no acesso à memória, permitindo que um thread possa alterar facilmente dados de outros. Para que threads trabalhem de
forma cooperativa, é fundamental que a aplicação implemente mecanismos de comunicação e sincronização entre
threads, a fim de garantir o acesso seguro aos dados compartilhados na memória. Por outro lado, o compartilhamento do
espaço de endereámento é extremamente simples e rápido.
6. Compare os pacotes de threads em modo usuário e modo kernel?
Threads em modo usuário (TMU) são implementados pela aplicação e não pelo sistema operacional. Para isso, deve
existir uma biblioteca de rotinas que possibilita à aplicação realizar tarefas como criação/eliminação de threads, troca de
mensagens entre threads e uma política de escalonamento. Neste modo, o sistema operacional não sabe da existência de
múltiplos threads, sendo responsabilidade exclusiva da aplicação gerenciar e sincronizar os diversos threads existentes.
Threads em modo kernel (TMK) são implementadas diretamente pelo núcleo do sistema operacional, através de
chamadas a rotinas do sistema que oferecem todas as funções de gerenciamento e sincronização. O sistema operacional
sabe da existência de cada thread e pode escaloná-los individualmente. No caso de múltiplos processadores, os threads
de um mesmo processo podem ser executados simultaneamente.
7. Qual a vantagem do scheduler activations comparado ao pacote híbrido?
A principal vantagem é melhorar o desempenho no seu uso evitando as mudanças de modos de acesso desnecessárias
(usuário-kernel-usuário). Caso um thread utilize uma chamada ao sistema que o coloque no estado de espera, não é
necessário que o kernel seja ativado, bastando que a própria biblioteca em modo usuário escalone outro thread. Isto é
possível porque a biblioteca em modo usuário e o kernel se comunicam e trabalham de forma cooperativa. Cada camada
implementa seu escalonamento de forma independente, porém trocando informações quando necessário.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 12
8. Dê exemplos do uso de threads no desenvolvimento de aplicativos, como editores de textos e planilhas
eletrônicas.
Livre.
9. Como o uso de threads pode melhorar o desempenho de aplicações paralelas em ambientes com
múltiplos processadores?
Para obter os benefícios do uso de threads, uma aplicação deve permitir que partes diferentes do seu código sejam
executadas em paralelo de forma independente. O uso de uma arquitetura com múltiplos processasdores beneficia a
concorrência entre os threads com a possibilidade do paralelismo de execução entre processadores.
10. Quais os benefícios do uso de threads em ambientes cliente-servidor?
O principal benefício do uso de threads em ambientes cliente-servidor é a melhoria no desempenho da aplicação
servidora. Além disso, a comunicação entre os threads no servidor pode ser feita através de mecanismos mais simples e
eficientes.
11. Como o uso de threads pode ser útil em arquiteturas microkernel?
A arquitetura microkernel utiliza processos para implementar funções relativas ao kernel do sistema operacional, sendo
que esses processos são utilizados como servidores quando algum cliente necessita de algum serviço do sistema.
Arquiteturas que implementam threads, possibilitam um melhor desempenho dos processos servidores.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 13
Capítulo 7 Sincronização e Comunicação entre Processos
1. Defina o que é uma aplicação concorrente e dê um exemplo de sua utilização.
É uma aplicação estruturada de maneira que partes diferentes do código do programa possam executar
concorrentemente. Este tipo de aplicação tem como base a execução cooperativa de múltiplos processos ou threads, que
trabalham em uma mesma tarefa na busca de um resultado comum.
2. Considere uma aplicação que utilize uma matriz na memória principal para a comunicação entre vários
processos concorrentes. Que tipo de problema pode ocorrer quando dois ou mais processos acessam uma
mesma posição da matriz?
Caso não haja uma gerência no uso concorrente dos recursos compartilhados, inconsistências nos dados podem ocorrer.
3. O que é exclusão mútua e como é implementada?
É impedir que dois ou mais processos acessem um mesmo recurso simultaneamente. Para isso, enquanto um processo
estiver acessando determinado recurso, todos os demais processos que queiram acessá-lo deverão esperar pelo término
da utilização do recurso
4. Como seria possível resolver os problemas decorrentes do compartilhamento da matriz, apresentado
anteriormente, utilizando o conceito de exclusão mútua?
Garantindo na aplicação que somente um único processo pode estar acessando a matriz por vez.
5. O que é starvation e como podemos solucionar esse problema?
Starvation é a situação onde um processo nunca consegue executar sua região crítica e, conseqüentemente, acessar o
recurso compartilhado. A solução para o problema depende de estabelecimentos de mecanismos de acesso pelo sistema
operacional que garantam o acesso ao recurso por todos os processos que solicitarem uso.
6. Qual o problema com a solução que desabilita as interrupções para implementar a exclusão mútua?
Essa solução apesar de simples, apresenta algumas limitações. Primeiramente, a multiprogramação pode ficar
seriamente comprometida, já que a concorrência entre processos tem como base o uso de interrupções. Um caso mais
grave poderia ocorrer caso um processo desabilitasse as interrupções e não tornasse a habilitá-las. Nesse caso, o
sistema, provavelmente, teria seu funcionamento seriamente comprometido.
Em sistemas com múltiplos processadores, esta solução torna-se ineficiente devido ao tempo de propagação quando um
processador sinaliza aos demais que as interrupções devem ser habilitadas ou desabilitadas. Outra consideração é que o
mecanismo de clock do sistema é implementado através de interrupções, devendo esta solução ser utilizada com
bastante critério.
7. O que é espera ocupada e qual o seu problema?
Na espera ocupada, toda vez que um processo não consegue entrar em sua região crítica, por já existir outro processo
acessando o recurso, o processo permanece em looping, testando uma condição, até que lhe seja permitido o acesso.
Dessa forma, o processo em looping consome tempo do processador desnecessariamente, podendo ocasionar problemas
ao desempenho do sistema.
8. Explique o que é sincronização condicional e dê um exemplo de sua utilização.
Sincronização condicional é uma situação onde o acesso ao recurso compartilhado exige a sincronização de processos
vinculada a uma condição de acesso. Um recurso pode não se encontrar pronto para uso devido a uma condição
específica. Nesse caso, o processo que deseja acessá-lo deverá permanecer bloqueado até que o recurso fique
disponível. Um exemplo clássico desse tipo de sincronização é a comunicação entre dois processos através de operações
de gravação e leitura em um buffer.
9. Explique o que são semáforos e dê dois exemplos de sua utilização: um para a solução da exclusão
mútua e outro para a sincronização condicional.
Um semáforo é uma variável inteira, não negativa, que só pode ser manipulada por duas instruções: DOWN e UP. Ver
itens 7.7.1 e 7.7.2.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 14
10. Apresente uma solução para o problema dos Filósofos que permita que os cinco pensadores sentem à
mesa, porém evite a ocorrência de starvation e deadlock.
Livre.
11. Explique o que são monitores e dê dois exemplos de sua utilização: um para a solução da exclusão mútua
e outro para a sincronização condicional.
Monitores são mecanismos de sincronização de alto nível que torna mais simples o desenvolvimento de aplicações
concorrentes. Ver itens 7.8.1 e 7.8.2.
12. Qual a vantagem da forma assíncrona de comunicação entre processos e como esta pode ser
implementada?
A vantagem deste mecanismo é aumentar a eficiência de aplicações concorrentes. Para implementar essa solução, além
da necessidade de buffers para armazenar as mensagens, devem haver outros mecanismos de sincronização que
permitam ao processo identificar se uma mensagem já foi enviada ou recebida.
13. O que é deadlock, quais as condições para obtê-lo e quais as soluções possíveis?
Deadlock é a situação em que um processo aguarda por um recurso que nunca estará disponível ou um evento que não
ocorrerá. Para que ocorra a situação de deadlock, quatro condições são necessárias simultaneamente:
exclusão mútua: cada recurso só pode estar alocado a um único processo em um determinado instante;
espera por recurso: um processo, além dos recursos já alocados, pode estar esperando por outros recursos;
não-preempção: um recurso não pode ser liberado de um processo só porque outros processos desejam o mesmo
recurso;
espera circular: um processo pode ter de esperar por um recurso alocado a outro processo e vice-versa.
Para prevenir a ocorrência de deadlocks, é preciso garantir que uma das quatro condições apresentadas, necessárias para
sua existência, nunca se satisfaça. A prevenção de deadlocks evitando-se a ocorrência de qualquer uma das quatro
condições é bastante limitada e, por isso, na prática não é utilizada. Uma solução conhecida como Algoritmo do
Banqueiro (implementada com a presença das quatro condições) também possui várias limitações. A maior delas é a
necessidade de um número fixo de processos ativos e de recursos disponíveis no sistema. Essa limitação impede que a
solução seja implementada na prática, pois é muito difícil prever o número de usuários no sistema e o número de
recursos disponíveis.
14. Em uma aplicação concorrente que controla saldo bancário em contas correntes, dois processos
compartilham uma região de memória onde estão armazenados os saldos dos clientes A e B. Os
processos executam, concorrentemente os seguintes passos:
Processo 1 (Cliente A) Processo 2 (Cliente B)
/* saque em A */ /*saque em A */
1a. x := saldo_do_cliente_A; 2a. y := saldo_do_cliente_A;
1b. x := x - 200; 2b. y := y - 100;
1c. saldo_do_cliente_A := x; 2c. saldo_do_cliente_A := y;
/* deposito em B */ /* deposito em B */
1d. x := saldo_do_cliente_B; 2d. y := saldo_do_cliente_B;
1e. x := x + 100; 2e. y := y + 200;
1f. saldo_do_cliente_B := x; 2f. saldo_do_cliente_B := y;
Supondo que os valores dos saldos de A e B sejam, respectivamente, 500 e 900, antes de os processos
executarem, pede-se:
a) Quais os valores corretos esperados para os saldos dos clientes A e B após o término da execução
dos processos?
Cliente A = 200 e Cliente B = 1.200
b) Quais os valores finais dos saldos dos clientes se a sequência temporal de execução das operações
for: 1a, 2a, 1b, 2b, 1c, 2c, 1d, 2d, 1e, 2e, 1f, 2f?
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 15
Cliente A = 400 e Cliente B = 1.100
c) Utilizando semáforos, proponha uma solução que garanta a integridade dos saldos e permita o maior
compartilhamento possível dos recursos entre os processos, não esquecendo a especificação da
inicialização dos semáforos.
Processo 1 (Cliente A) Processo 2 (Cliente B)
/* saque em A */ /*saque em A */
Down (S1) Down (S1)
x := saldo_do_cliente_A; y := saldo_do_cliente_A;
x := x - 200; y := y - 100;
saldo_do_cliente_A := x; saldo_do_cliente_A := y;
Up (S1) Up (S1)
/* deposito em B */ /* deposito em B */
Down (S2) Down (S2)
x := saldo_do_cliente_B; y := saldo_do_cliente_B;
x := x + 100; y := y + 200;
saldo_do_cliente_B := x; saldo_do_cliente_B := y;
Up (S2) Up (S2)
15. O problema dos leitores/escritores, apresentado a seguir, consiste em sincronizar processos que
consultam/atualizam dados em uma base comum. Pode haver mais de um leitor lendo ao mesmo tempo;
no entanto, enquanto um escritor está atualizando a base, nenhum outro processo pode ter acesso a ela
(nem mesmo leitores).
VAR Acesso: Semaforo := 1;
Exclusao: Semaforo := 1;
Nleitores: integer := 0;
PROCEDURE Escritor;
BEGIN
ProduzDado;
DOWN (Acesso);
Escreve;
UP (Acesso);
END;
PROCEDURE Leitor;
BEGIN
DOWN (Exclusao);
Nleitores := Nleitores + 1;
IF ( Nleitores = 1 ) THEN DOWN (Acesso);
UP (Exclusao);
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 16
Leitura;
DOWN (Exclusao);
Nleitores := Nleitores - 1;
IF ( Nleitores = 0 ) THEN UP (Acesso);
UP (Exclusao);
ProcessaDado;
END;
a) Suponha que exista apenas um leitor fazendo acesso à base. Enquanto este processo realiza a
leitura, quais os valores das três variáveis?
Acesso=0 Exclusao=1 Nleitores=1
b) Chega um escritor enquanto o leitor ainda está lendo. Quais os valores das três variáveis após o
bloqueio do escritor ? Sobre qual(is) semáforo(s) se dá o bloqueio?
Acesso=0 Exclusao=1 Nleitores=1, o bloqueio ocorre no semáforo Acesso.
c) Chega mais um leitor enquanto o primeiro ainda não acabou de ler e o escritor está bloqueado.
Descreva os valores das três variáveis quando o segundo leitor inicia a leitura.
Acesso=0 Exclusao=1 Nleitores=2
d) Os dois leitores terminam simultaneamente a leitura. É possível haver problemas quanto à
integridade do valor da variável nleitores? Justifique.
Não, pois a exclusão mútua a esta variável é implementada pelo semáforo Exclusao.
e) Descreva o que acontece com o escritor quando os dois leitores terminam suas leituras. Descreva
os valores das três variáveis quando o escritor inicia a escrita.
O processo Escritor inicia a escrita. Acesso=0 Exclusao=1 Nleitores=0
f) Enquanto o escritor está atualizando a base, chagam mais um escritor e mais um leitor. Sobre
qual(is) semáforo(s) eles ficam bloqueados? Descreva os valores das três variáveis após o
bloqueio dos recém-chegados.
Os processo ficam bloqueados no semáforo Acesso. Acesso=0 Exclusao=0 Nleitores=1
g) Quando o escritor houver terminado a atualização, é possível prever qual dos processos
bloqueados (leitor ou escritor) terá acesso primeiro à base?
Não, em geral os sistemas operacionais utilizam a escolha randômica dentre os processos em estado de
espera.
h) Descreva uma situação onde os escritores sofram starvation (adiamento indefinido).
Caso um processo Escritor esteja aguardando, bloqueado pelo semáforo Acesso, e sempre surgirem novos
processos Leitor, o processo Escritor pode nunca ganhar acesso ao recurso.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 17
Capítulo 8 Gerência do Processador
1. O que é política de escalonamento de um sistema operacional?
Uma política de escalonamento é composta por critérios estabelecidos para determinar qual processo em estado de
pronto será escolhido para fazer uso do processador.
2. Quais as funções do escalonador e do dispatcher?
O escalonador é uma rotina do sistema operacional que tem como principal função implementar os critérios da política
de escalonamento. O dispatcher é responsável pela troca de contexto dos processos após o escalonador determinar qual
processo deve fazer uso do processador.
3. Quais os principais critérios utilizados em uma política de escalonamento?
Utilização do processador, throughput, tempo de Processador (tempo de UCP), tempo de espera, tempo de turnaround e
tempo de resposta.
4. Diferencie os tempos de processador, espera, turnaround e resposta.
Tempo de processador ou tempo de UCP é o tempo que um processo leva no estado de execução durante seu
processamento. Tempo de espera é o tempo total que um processo permanece na fila de pronto durante seu
processamento, aguardando para ser executado. Tempo de turnaround é o tempo que um processo leva desde a sua
criação até ao seu término, levando em consideração todo o tempo gasto na espera para alocação de memória, espera na
fila de pronto (tempo de espera), processamento na UCP (tempo de processador) e na fila de espera, como nas
operações de E/S. Tempo de resposta é o tempo decorrido entre uma requisição ao sistema ou à aplicção e o instante em
que a resposta é exibida..
5. Diferencie os escalonamentos preemptivos e não-preemptivos.
No escalonamento preemptivo, o sistema operacional pode interromper um processo em execução e passá-lo para o
estado de pronto, com o objetivo de alocar outro processo na UCP. No escalonamento não-preemptivo, quando um
processo está em execução, nenhum evento externo pode ocasionar a perda do uso do processador. O processo somente
sai do estado de execução, caso termine seu processamento ou execute instruções do próprio código que ocasionem uma
mudança para o estado de espera.
6. Qual a diferença entre os escalonamentos FIFO e circular?
O FIFO é um escalonamento não-preemptivo onde o processo que chegar primeiro ao estado de pronto é o selecionado
para execução. Este algoritmo é bastante simples, sendo necessária apenas uma fila, onde os processos que passam para
o estado de pronto entram no seu final e são escalonados quando chegam ao seu início. Quando um processo vai para o
estado de espera, o primeiro processo da fila de pronto é escalonado. Todos os processos quando saem do estado de
espera entram no final da fila de pronto. O Circular é um escalonamento preemptivo, projetado especialmente para
sistemas de tempo compartilhado. Esse algoritmo é bastante semelhante ao FIFO, porém, quando um processo passa
para o estado de execução, existe um tempo limite para o uso contínuo do processador denominado fatia de tempo
(time-slice) ou quantum.
7. Descreva o escalonamento SJF e o escalonamento por prioridades.
No escalonamento SJF, o algoritmo de escalonamento seleciona o processo que tiver o menor tempo de processador
ainda por executar. Dessa forma, o processo em estado de pronto que necessitar de menos tempo de UCP para terminar
seu processamento é selecionado para execução. O escalonamento por prioridades é um escalonamento do tipo
preemptivo realizado com base em um valor associado a cada processo denomidado prioridade de execução. O processo
com maior prioridade no estado de pronto é sempre o escolhido para execução e processos com valores iguais são
escalonados seguindo o critério de FIFO. Neste escalonamento, o conceito de fatia de tempo não existe,
conseqüentemente, um processo em execução não pode sofrer preempção por tempo.
8. Qual a diferença entre preempção por tempo e preempção por prioridade?
Preempção por tempo ocorre quando o sistema operacional interrompe o processo em execução em função da expiração
da sua fatia de tempo, substituindo-o por outro processo. Preempção por prioridade, ocorre quando o sistema
operacional interrompe o processo em execução em função de um processo entrar em estado de pronto com prioridade
superior ao do processo em execução.
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 18
9. O que é um mecanismo de escalonamento adaptativo?
É um mecanismo onde o sistema operacional identifica o comportamento dos processos durante sua execução
adaptando as políticas de escalonamento dinamicamente.
10. Que tipo de escalonamento aplicações de tempo real exigem?
Escalonamento por prioridades onde é possível atribuir prioridades aos processos em função da sua importância. Além
disso, o mecanismo de preempção por prioridades garante o escalonamento imediato de processos críticos quando esses
passam para o estado de pronto.
11. O escalonamento por múltiplas filas com realimentação favorece processos CPU-bound ou I/O-bound?
Justifique.
Processos I/O-bound são favorecidos neste tipo de escalonamento. Como a probabilidade desse tipo de processo sofrer
preempção por tempo é baixa, a tendência é que os processos I/O-bound permaneçam nas filas de alta prioridade
enquanto os processos CPU-bound tendem a posicionar-se nas filas de prioridade mais baixa.
12. Considere que cinco processos sejam criados no instante de tempo 0 (P1 , P2 , P3 , P4 e P5) e possuam
as características descritas na tabela a seguir:
Processo Tempo de UCP Prioridade
P1 10 3
P2 14 4
P3 5 1
P4 7 2
P5 20 5
Desenhe um diagrama ilustrando o escalonamento dos processos e seus respectivos tempos de turnaround,
segundo as políticas especificadas a seguir. O tempo de troca de contexto deve ser desconsiderado.
a) FIFO
b) SJF
c) Prioridade (número menor implica prioridade maior)
d) Circular com fatia de tempo igual a 2 u.t.
a)
P1 P2
1
0
2
4
P3 P4 P5
2
9
3
6
……. 5
6
b)
P3 P4 P1 P2
0
5
1
2
2
2
P2 P5
2
9
3
6
……. 5
6
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 19
c)
P3 P4 P1 P2
0
5
1
2
2
2
P2 P5
2
9
3
6
……. 5
6
d)
P3 P4 P1 P2
0
5
12 2
2
P2 P5
2
9
3
6
……. 5
6
13. Considere um sistema operacional com escalonamento por prioridades onde a avaliação do
escalonamento é realizada em um intervalo mínimo de 5ms. Neste sistema, os processos A e B
competem por uma única UCP. Desprezando os tempos de processamento relativo às funções do sistema
operacional, a tabela a seguir fornece os estados dos processos A e B ao longo do tempo, medido em
intervalos de 5 ms (E=execução, P=pronto e W=espera). O processo A tem menor prioridade que o
processo B.
00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49
ProcessoA P P E E E P P P E W
Processo B E E W W P E E E W W
50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 100- 105
Processo A P E P P E E W W P E E
Processo B W P E E W W P E E - -
a) Em que tempos A sofre preempção?
Instantes 24-25, 59-60
b) Em que tempos B sofre preempção?
Nunca, pois o processo B possui maior prioridade do que o processo A.
c) Refaça a tabela anterior supondo que o processo A é mais prioritário que o processo B.
00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49
ProcessoA E E E E W P E E E W
Processo B P P P P E E W W P E
50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 100-105 106- 115
Processo A W P E E - - - - - - - -
Processo B E E W W W P E E W W P E
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 20
14. Como o valor do quantum pode afetar o grau de multiprogramação em um sistema operacional? Qual a
principal desvantagem de um quantum com um valor muito pequeno?
Um valor de quantum grande pode prejudicar a multiprogramação, na medida em que a ocorrência de preempções por
tempo é reduzida, favorecendo os processos CPU-bound e prejudicando os processos I/O-bound. Um valor de quantum
pequeno ocasionaria um grande overhead ao sistema devido a alta frequência de mudanças de contexto geradas pelas
frequentes preempções por tempo.
15. Considere um sistema operacional que implemente escalonamento circular com fatia de tempo igual a 10
u.t.. Em um determinado instante de tempo, existem apenas três processos (P1, P2 e P3) na fila de
pronto, e o tempo de UCP de cada processo é 18, 4 e 13 u.t, respectivamente. Qual o estado de cada
processo no instante de tempo T, considerando a execução dos processos P1, P2 e P3, nesta ordem, e que
nenhuma operação de E/S é realizada?
a) T = 8 u.t.
P1: Execução, P2:Pronto, P3:Pronto
b) T = 11 u.t.
P1: Pronto, P2:Execução, P3:Pronto
c) T = 33 u.t.
P1: Terminado, P2:Terminado, P3:Execução
16. Considere um sistema operacional que implemente escalonamento circular com fatia de tempo igual a 10
u.t. Em um determinado instante de tempo, existem apenas três processos (P1, P2 e P3) na fila de pronto,
e o tempo de UCP de cada processo é 14, 4 e 12 u.t, respectivamente. Qual o estado de cada processo no
instante de tempo T, considerando a execução dos processos P1, P2 e P3, nesta ordem, e que apenas o
processo P1 realiza operações de E/S? Cada operação de E/S é executada após 5 u.t. e consome 10 u.t.
a) T = 8 u.t.
P1: Espera, P2:Execução, P3:Pronto
b) T = 18 u.t.
P1: Pronto, P2:Terminado, P3:Execução
c) T = 28 u.t.
P1: Espera, P2:Terminado, P3:Terminado
17. Existem quatro processos (P1, P2, P3 e P4) na fila de pronto, com tempos de UCP estimados em 9, 6, 3 e
5, respectivamente. Em que ordem os processos devem ser executados para minimizar o tempo de
turnaround dos processos?
A melhor política para minimizar o tempo de turnaround seria utilizar o escalonamento SJF na sequência de execução
P3, P4, P2 e P1.
18. Considere a tabela a seguir onde
Processo Tempo de UCP Prioridade
P1 40 4
P2 20 2
P3 50 1
P4 30 3
Qual o tempo de turnaround médio dos processos considerando o tempo de troca de contexto igual a 0 e
a 5 u.t. para os seguintes escalonamentos:
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 21
a) FCFS
Com troca de contexto = 0 u.t.
P1 P2 P3 P4
0
4
0
0
6
0
1
1
0
P4
1
4
0
Com troca de contexto = 5 u.t.
P1 P2 P3
0
4
0
0
4
5
0
6
5
0
7
0
1
2
0
P4
1
2
5
1
5
5
b) SJF
Com troca de contexto = 0 u.t.
P2 P4 P1 P3
0
2
0
0
5
0
0
9
0
P3
1
4
0
Com troca de contexto = 5 u.t.
P2 P4 P1 P3
0
2
0
0
2
5
0
5
5
0
6
0
1
0
0
1
0
5
P3
1
5
5
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 22
c) Circular com fatia de tempo igual a 20 u.t.
Com troca de contexto = 0 u.t.
P1 P2 P3 P4 P1 P3
0
2
0
0
4
0
0
6
0
0
8
0
1
0
0
1
2
0
Com troca de contexto = 5 u.t.
P1 P2 P3 P4 P1
0
2
0
0
2
5
0
4
5
0
5
0
0
7
0
0
7
5
0
9
5
1
0
0
1
2
0
P3 P4 P3
1
2
5
1
4
5
1
5
0
1
6
0
1
6
5
1
7
5
P4 P3
1
3
0
1
4
0
Soluções de Exercícios Autores Versão 3.1 (Jan/2004)
Arquitetura de Sistemas Operacionais 3a Edição Machado/Maia 23
Capítulo 9 Gerência de Memória
1. Quais as funções básicas da gerência de memória?
Maximizar o número de processos na memória, permitir a execução de programas maiores que a memória física,
compartilhamento de dados na memória e proteção da memória utilizada por cada processo e pelo sistema operacional.
2. Considere um sistema computacional com 40Kb de memória principal e que utilize um sistema
operacional de 10Kb que implemente alocação contígua de memória. Qual a taxa de subutilização da
memória principal para um programa que ocupe 20Kb de memória?
Considerando que o sistema opeacional e o programa somados ocupam ¾ da memória principal, temos 25% de
subutilização da memória.
3. Suponha um sistema computacional com 64Kb de memória principal e que utilize um sistema
operacional de 14Kb que implemente alocação contígua de memória. Considere também um programa
de 90Kb, formado por um módulo principal de 20Kb e três módulos independentes, cada um com 10Kb,
20Kb e 30Kb. Como o programa poderia ser executado utilizando-se apenas a técnica de overlay?
Como existe apenas 50Kb para a execução do programa, a memória deve ser dividida em duas áreas: uma para o
módulo principal (20Kb) e outra de overlay para a carga dos módulos, em função do tamanho do maior módulo (30
Kb).
4. Considerando o exercício anterior, se o módulo de 30Kb tivesse seu tamanho aumentado para 40Kb,
seria possível executar o programa? Caso não possa, como o problema poderia ser contornado?
Não. No caso de não haver como aumentar o espaço de memória real, a única solução seria tentar alterar o programa de
forma que o módulo de 40Kb pudesse ser dividido em outros módulos menores independentes.

Entradas relacionadas: